Refine Your Search

Topic

Author

Search Results

Technical Paper

Hitch System Comparison — Mechanical, Hydraulic, Electronic

1984-09-01
841130
Modern agricultural tractors are equipped with a hitch control system. These may be mechanical-hydraulic, hydraulic-hydraulic, or electronic-hydraulic. With the variety of design options open to the tractor manufacturer, it is important to select the system which best fits the manufacturer and end user. This paper presents a comprehensive comparison of each system. Robert Bosch has had many years experience in the design and manufacture of components for hitch systems, and hopes to help designers choose the approach best suited for them.
Technical Paper

Application Possibilities and Future Chances of “Smart” Sensors in the Motor Vehicle

1989-02-01
890304
Current vehicle concepts necessitate the multiple measurement of several variables required by separate electronic systems in the motor vehicle. There is the need to make sensors bus capable by the incorporation of electronic components in new definition concepts, in other words to make them multiply usable. Such bus concepts are at the present time taking concrete shape. The step of introducing electronics - especially digital - to the measuring point may simultaneously be used to considerably improve utilization of the information content of sensor structures using means of indivdual, digital correction to a greater level than has until now been technically possible. There remains the demand for high stability and reproducibility of the sensor properties over time. These signal preprocessing and information condensation processes on the spot also satisfy the need to relieve the central control units.
Technical Paper

Increased Safety and Improved Comfort Thanks to Electronic Systems for Bus and Truck Applications

1989-11-01
892509
Electronic systems have been used in commercial vehicles for quite a few years now. At the start, this primarily related to consumer electronics equipment (car radio and CB radio), but, since the late 70s, electronic control systems have also been used for a wide variety of applications in commercial vehicles. This development went hand in hand with the development of digital microcontrollers. It was only when such powerful electronic circuits were developed that it was possible to implement complex control tasks at feasible cost with adequately compact design. Nowadays, an extremely wide variety of systems is offered for the engine, suspension, brakes, comfort and entertainment.
Technical Paper

Anti-Lock Braking System for Commercial Vehicles

1988-10-01
881821
Commercial vehicles must convey people and goods safely and reliable, irrespective of the weather and road conditions. The ABS safety braking systems are an essential prerequisite for fulfillment of this primary task. ABS has been used in European commercial vehicles since 1981. Today there are already fittet as standard in buses to some extend. The contribution to increasing road safety is causing the European lawmakers to make ABS statutory for commercial vehicles and to make it part of their compulsory equipment. Suitable anti-lock braking systems and closed loop configurations for commercial vehicles are demonstrated by theoretical observations and technical driving trials, their axlespecific and closed-loop control characteristics are highlighted.
Technical Paper

Measurement and Simulation of Transient Tire Forces

1989-02-01
890640
High performance Antilock Braking Systems (ABS) are well known to allow for very rapid pressure changes in the wheel brake cylinders. Recordings of the wheel speed during ABS control show oscillations just after the rapid pressure changes. The oscillations can not be explained by simulation if the usual stationary brake force versus slip curves are used. Thus the investigation of the oscillations requires a different approach to the modelling of the tire. As a first step in the alternative modelling of the tire the forces and moments on the running tire were measured using an experimental car. During the measurement the pressure in the wheel brake cylinder was modulated stepwise. A new Rotating Wheel Dynamometer was used to take those measurements. The results showed that the oscillations which were observed in the wheel speed could also be found in the braking force on the tire. Contrarily, the corresponding oscillations could not be found in the braking torque.
Technical Paper

ABS and ASR for Passenger Cars -Coals and Limits

1989-02-01
890834
Antilock Braking Systems (ABS) and Traction Control Systems (ASR) should ensure maximum stability and steerability even under extreme driving conditions. Since high performance systems additionally improve brake distance and traction within the given physical limits, every vehicle equipped with ABS and ASR offers considerably higher active safety. ABS was introduced into the market by the Robert Bosch GmbH more than ten years ago, and more than 3 million systems have been produced by the end of 1988. Volume production of ASR began in 1987. This paper describes several high-, medium-, and low performance concepts and compares them with regard to safety and performance. Although it seems to be nearly impossible to define a cost/benefit ratio between monetary values and safety, our purpose here is to identify further development strategies through the use of a decision matrix.
Technical Paper

BOSCH-ABS - Designed for the User

1986-11-01
861977
Bosch's antilock braking system (ABS) is available for any type of vehicle design. It has been developed in cooperation with vehicle manufacturers and users. Safety and reliability were the eminent targets of this development. A new feature is a self-diagnostic system.
Technical Paper

New Electronic Systems Worldwide - The Supplier's View

1986-11-01
861972
Despite the tough environmental conditions facing electronic systems in commercial vehicles, electronics is gaining ground also in these applications. In the drive sector it improves the operation of the main and auxiliary drives, upgrades fuel efficiency and reduces emission pollutant levels. It enhances safety by preventing wheel spinning in braking and acceleration. Electronic displays reduce the number of single indications otherwise needed, thus making for more clarity in information for the driver and facilitating the driver's task. Self-diagnosing and integrated emergency operation (“limp home”) capabilities are to ensure availability, a factor of special importance in commercial vehicles. A data interface standardized as widely as possible would allow add-on systems to be coupled easily and flexibly.
Technical Paper

Traction Control (ASR) for Commercial Vehicles. A Further Step Towards Safety on our Roads

1987-11-01
872272
Alongside steering, accelerating and braking are the basic operations in the automobile which are nowadays still left to the driver to perform in their entirety. In performing these basic functions, it may come about that excessive demands are made upon a driver, these arising due to poor road conditions - rain, snow and ice - or as a result of suddenly changing traffic situations. With the introduction of anti-lock braking systems (ABS), a decisive step has been taken to increase active driving and traffic safety. The ABS prevents the lockup of the wheels during overbraking. The vehicle remains steerable and retains stable directional control. Furthermore, in many cases, a shorter braking distance is gained compared to braking with the wheels locked up. BOSCH has been manufacturing and supplying ABS for passenger cars since 1978 and for commercial vehicles and buses since 1981. ABS has proved to be an overwhelming success in practical usage.
Technical Paper

ASR - Traction Control - A Logical Extension of ABS

1987-02-01
870337
Control of a car is lost, or considerably reduced, whenever one or more of the wheels exceed the stability limit during braking or accelerating due to excessive brake or drive slip. The problem of ensuring optimum stability, steerability and brake distance of a car during hard braking is solved by means of the well-known Anti-lock Braking System (ABS). The task to guarantee stability, steerability and optimum traction during acceleration, particularly on asymmetrical road surfaces and during cornering maneuvers, is being performed by the traction control system (ASR). Several means to provide an optimum traction control are described, e. g the control of engine torque by influencing the throttle plate and/or the ignition and/or the fuel injection.
Technical Paper

Motor Vehicle Sensors Based on Film-Technology: An Interesting Alternative to Semiconductor Sensors

1987-02-01
870477
The manufacture of semiconductor sensors requires high investment and does not become economically viable until very high production numbers come into consideration. In the case of low production numbers, of the kind that come into consideration for production startups, and in the case of variations e.g. in the measuring range and similar, as may be the case due to the adaptation of models, it may be more viable to employ other techniques which likewise have a high rationalization potential which comes into effect already at low production numbers and which exhibits greater flexibility. The film techniques offer alternative sensor concepts for many measured quantities, whose production is reasonable in price even at smaller production numbers and possesses the necessary alteration flexibility. Besides these, are the advantages of the laser adjustment and the seamless connection of the evaluation electronics. Even possibilities laying within micro-machining technology can be used.
Technical Paper

OSEKtime: A Dependable Real-Time Fault-Tolerant Operating System and Communication Layer as an Enabling Technology for By-Wire Applications

2000-03-06
2000-01-1051
The new generation of drive-by-wire systems currently under development has demanding requirements on the electronic architecture. Functions such as brake-by-wire or steer-by-wire require continued operation even in the presence of component failures. The electronic architecture must therefore provide fault-tolerance and real-time response. This in turn requires the operating system and the communication layer to be predictable, dependable and composable. It is well known that this properties are best supported by a time-triggered approach. A consortium consisting of German and French car manufacturers and suppliers, which aims at becoming a working group within the OSEK/VDX initiative, the OSEKtime consortium, is currently defining a specification for a time-triggered operating system and a fault-tolerant communication layer.1 The operating system and the communication layer are based on applicable interfaces of the OSEK/VDX standard.
Technical Paper

Pre-crash Sensing - Its Functional Evolution Based on a Platform Radar Sensor

2000-10-03
2000-01-2718
Pre-crash functionality is defined in three functional steps: PRESET, PREFIRE and PREACT. The functional steps are described in the order of growing situation analysis performance requirements and an increasing amount of necessary system application effort. Each functional step defines its own range of view, the so-called virtual barrier. The definition of the virtual barrier is subject to various constraints in respect to sensor configuration and pre-crash performance. A more detailed description of PRESET functionality for frontal pre-crash is given together with a test example. Pre-crash sensing technology uses platform radar sensors. The platform sensors are designed for the integration of all possible functions that rely on sensor information from the close surroundings of the vehicle. This development approach guarantees a high cost efficiency, flexibility and modularity of the sensor system while still guaranteeing the full pre-crash functionality.
Journal Article

Motorcycle Stability Control - The Next Generation of Motorcycle Safety and Riding Dynamics

2015-11-17
2015-32-0834
Anti-lock Braking Systems (ABS) for motorcycles have already contributed significantly to the safety of powered two-wheelers (PTW) on public roads by improving bike stability and controllability in emergency braking situations. In order to address further riding situations, another step forward has been achieved with Motorcycle Stability Control (MSC) system. By combining ABS, electronically combined braking system (eCBS), traction control and inertial sensors even in situations like braking and accelerating in corners the riders' safety can be improved. The MSC system controls the distribution of braking and traction forces using an algorithm that takes into account all available vehicle information from wheels, power train and vehicle attitude. With its ability to control fundamental vehicle dynamics, the MSC system will be a basis for further development and integration of comprehensive safety systems.
Technical Paper

FMI for Physics-Based Models on AUTOSAR Platforms

2017-01-10
2017-26-0358
As automobiles become increasingly smarter, the need to understand within the automotive software the physical behavior of its parts is growing as well. The laws of physics governing such behavior are mostly formulated as differential equations, which today are usually created or obtained from various modeling tools. For solving them, the tools offer several solvers to satisfy the requirements of different problems. E.g. simple and fast explicit low order solvers for non-stiff problems and more complex implicit solvers for stiff problems. Though the modeling and code generation features as available in such tools are desirable for embedded automotive software, they cannot be used directly due to special restrictions with respect to hard realtime constraints. One such restriction is the organization of automotive software in components complying with the AUTOSAR standard which is not widely supported by the modeling tools.
Technical Paper

Loss of Control Car Accidents on Indian Roads - Benefit Estimation of ESC

2019-01-09
2019-26-0009
India has one of the highest growth rates of individual mobility in the world, as well as one of the largest numbers of road casualties. Modern active safety systems are slowly becoming established in the Indian passenger car market. The intension of this study is to investigate the effectiveness of the car safety feature Electronic Stability Control (ESC) for India. The Indian accidents has to be analysed to identify the reliable root cause. For this purpose, passenger car Loss of Control accidents were investigated in more detail with the aim of estimating the safety potential of ESC for India. A methodology is developed to extrapolate the in-depth accident database of Road Accident Sampling System for India (RASSI) to the entire accident situation in India. Loss of Control accidents are analysed with regard to their root causes, crash consequences and contributing factors.
Technical Paper

Software Controlled Homogeneity Analysis of Headlamp Light Distribution

1999-03-01
1999-01-0700
This paper will describe the procedures that will enhance the possibilities of qualitative evaluation of headlamp light distributions. A basis will be the description of a light distribution coming only from reflector geometries, i.e. headlamps with clear outer lens design. Further steps of evaluation, as visualization and homogeneity analysis become more and more important for a headlamp evaluation. The recently developed tools can support both the headlamp manufacturer and the car manufacturer in finding a common understanding in headlamp performance of a projected car at a very early stage of development.
Technical Paper

Tool Support for Analyzing and Optimization Methods in Early Brake System Sizing Phases

2000-03-06
2000-01-0442
The manufacturers of passenger cars increasingly assign development and production of complete subsystems to the supplying industry. A brake system supplier has to give predictions about system quality and performance long time before the first prototypical system is built or even before the supplier gets the order for system development. Nowadays, the usage of computer-aided system design and simulation is essential for that task. This article presents a tool designed to support the development process. A special focus will be on how to define quality. A formal definition of quality is provided, illustrated and motivated by two examples.
Technical Paper

A Review of the Requirements for Injection Systems and the Effects of Fuel Quality on Particulate Emissions from GDI Engines

2018-09-10
2018-01-1710
Particulate emissions from Gasoline Direct Injection (GDI) engines have been an important topic of recent research interest due to their known environmental effects. This review paper will characterise the influence of different gasoline direct injection fuel systems on particle number (PN) emissions. The findings will be reviewed for engine and vehicle measurements with appropriate driving cycles (especially real driving cycles) to evaluate effects of the fuel injection systems on PN emissions. Recent technological developments alongside the trends of the influence of system pressure and nozzle design on injector tip wetting and deposits will be considered. Besides the engine and fuel system it is known that fuel composition will have an important effect on GDI engine PN emissions. The evaporation qualities of fuels have a substantial influence on mixture preparation, as does the composition of the fuel itself.
Technical Paper

Analyze This! Sound Static Analysis for Integration Verification of Large-Scale Automotive Software

2019-04-02
2019-01-1246
Safety-critical embedded software has to satisfy stringent quality requirements. One such requirement, imposed by all contemporary safety standards, is that no critical run-time errors must occur. Runtime errors can be caused by undefined or unspecified behavior of the programming language; examples are buffer overflows or data races. They may cause erroneous or erratic behavior, induce system failures, and constitute security vulnerabilities. A sound static analyzer reports all such defects in the code, or proves their absence. Sound static program analysis is a verification technique recommended by ISO/FDIS 26262 for software unit verification and for the verification of software integration. In this article we propose an analysis methodology that has been implemented with the static analyzer Astrée. It supports quick turn-around times and gives highly precise whole-program results.
X